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Abstract. We study the formation of stationary localized states using the discrete nonlinear Schrödinger
equation in a Cayley tree with connectivity K. Two cases, namely, a dimeric power law nonlinear impurity
and a fully nonlinear system are considered. We introduce a transformation which reduces the Cayley tree
into an one dimensional chain with a bond defect. The hopping matrix element between the impurity sites
is reduced by 1/

√
K. The transformed system is also shown to yield tight binding Green’s function of the

Cayley tree. The dimeric ansatz is used to find the reduced Hamiltonian of the system. Stationary localized
states are found from the fixed point equations of the Hamiltonian of the reduced dynamical system. We
discuss the existence of different kinds of localized states. We have also analyzed the formation of localized
states in one dimensional system with a bond defect and nonlinearity which does not correspond to a
Cayley tree. Stability of the states is discussed and stability diagram is presented for few cases. In all cases
the total phase diagram for localized states have been presented.

PACS. 71.55.-i Impurity and defect levels – 72.10.Fk Scattering by point defects, dislocations, surfaces,
and other imperfections (including Kondo effect)

1 Introduction

One well studied nonlinear equation in condensed matter
physics and optics is the discrete nonlinear Schrödinger
equation (DNLSE). The DNLSE is a nonintegrable stan-
dard discretization of the integrable nonlinear Schrödinger
equation [1]. The DNLSE in one dimension in its general
form is a set of n coupled nonlinear differential equations.

i
dCm

dt
=−χmfm(|Cm|)Cm+Vm,m+1Cm+1+Vm,m−1Cm−1

where Vm,m+1 = V ?m+1,m; and m = 1, 2, 3, ...n. (1)

In equation (1) the nonlinearity appears through functions
fm(|Cm|) and χm is the nonlinearity parameter associated
with the m-th grid point. Since,

∑
m |Cm|

2 is made unity
by choosing appropriate initial conditions, |Cm|2 can be
interpreted as the probability of finding a particle at the
m-th grid point. The analytical solutions of equation (1) in
general are not known. Numerous works, both analytical
as well as numerical, on the DNLSE have been reported
[1–16]. As for its application particularly in condensed
matter physics, we cite among others the exciton prop-
agation in Holstein molecular crystal chain [2]. In general,
the exciton propagation in quasi one dimensional systems
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[17] having short range electron phonon interaction can be
adequately modeled by the DNLSE. Other examples in-
clude nonlinear optical responses in superlattices formed
by dielectric or magnetic slabs [18] and the mean field the-
ory of a periodic array of twinning planes in the high Tc
superconductors [19].

One important feature of the DNLSE is that this can
yield stationary localized (SL) states. This is intricately
related to the discretization and the consequent noninte-
grability of the DNLSE [20]. To understand this we note
that the continuous nonlinear Schrödinger equation is in-
tegrable and it yields soliton, multisoliton and multisoli-
ton bound states [21]. The soliton solution of the DNLSE
has also been investigated by peturbative method [22,23].
The starting point of the approach is the Ablowitz-Ladik
equation [24] which is discrete but integrable. It has been
shown that from the DNLSE soliton in the form of a kink
can be obtained under restrictive conditions. But mostly
the solution has center of mass of the soliton executing
oscillatory motion [23]. This is due to the nonintegrabil-
ity of the DNLSE. Then in the limit of small oscillation
we basically obtain SL states. In other words SL states
are low energy excitations in the system described by the
DNLSE in the quasicontinuum limit. On the other hand,
stronger discretization destroys moving soliton altogether
[23]. Hence SL states are the most prominent solutions of
the equation. In the presence of gliding forces like applied
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electric field the SL state in the quasicontinuum limit can
go to the finite oscillation state and finally to the mov-
ing soliton phase. Hence the study of SL states is impor-
tant for understanding transport properties of conducting
polymers like trans-polyactylene. These SL states might
also play a relevant role in the nonlinear DNA dynamics
[25] and in the energy localization in nonlinear lattices
[26].

As discussed previously, systems described by the
DNLSE can yield SL states. It is also well known that
in one dimensional systems these states will fall exponen-
tially [27,28] asymptotically. So, to understand the forma-
tion of SL states in fully nonlinear systems, it is necessary
to consider SL states due to nonlinear clusters embedded
in an otherwise perfect lattice. Outside the cluster these
states will fall exponentially for one dimensional lattices
[29]. Various SL states can arise then due to nodes in the
states inside the cluster. Again the energy of the state in-
creases with the increase of nodes. In large clusters one
can obtain states with large number of nodes. The en-
ergy of these states will also be large. On the other hand,
most dominant ones have low energy and consequently less
number of nodes. Hence it is sufficient to consider small
clusters. This is the motivation for the study of nonlinear
dimer embedded in a perfect lattice.

It has been shown that the presence of a nonlinear
impurity can produce SL states in one, two and three di-
mension [20,27–34]. The formation of SL states due to
the presence of a single and a dimeric nonlinear impurity
in few linear hosts has been studied in details [34]. The
same problem is also studied starting from an appropri-
ate Hamiltonian [29]. The fixed point of the Hamiltonian
[20,27–29] which generates the appropriate DNLSE can
also produce the correct equations governing the forma-
tion of SL states. We further note that the appropriate
ansatz for the dimer problem has been obtained in our ear-
lier analysis [34]. Furthermore, the formation of intersite
peaked and dipped stationary localized states has been
studied using the dimeric ansatz. The effect of one nonlin-
ear impurity as well as a dimeric impurity in an otherwise
perfect nonlinear chain on the formation of SL states has
also been studied [28]. The other important aspect to be
considered is the effect of connectivity on the formation
of SL states. The simplest way to study this is to consider
the Cayley tree. The effect of one power law nonlinear
impurity in an otherwise perfect Cayley tree has already
been considered [34]. So, we plan here to study the effect
of a dimeric nonlinear impurity in an otherwise perfect
Cayley tree. We further consider the fully nonlinear Cay-
ley tree. For this purpose a transformation is devised to
map the system to an effective one dimensional chain with
a bond defect. Consequently, from the symmetry consid-
eration, the dimeric ansatz is found to be suitable for this
study. The appropriate form of the monomeric ansatz is
also found for this case to study the formation of on-site
peaked solitons.

The organization of the paper is as follows. In Sec-
tion 2 we introduce a transformation which reduces the
Cayley tree into a one dimensional system with a bond

Fig. 1. Cayley tree with connectivity 2. All bonds are of same
length.

defect. This transformation has also been checked through
Green’s function analysis in Appendix A. SL states in the
Cayley tree in presence of a dimeric nonlinear impurity is
discussed in Section 3. In Section 4, fully nonlinear Cayley
tree is discussed. Finally in Section 5 we summarize our
investigations. Section 6 contains Appendix A and Ap-
pendix B.

2 Transformation of Cayley tree to one
dimensional system

The structure of a Cayley tree with connectivity,K=Z−1
is shown in Figure 1. Z is the coordination number. We
pick up a connection and its two ends are numbered 0 and
1 respectively without any loss of generality. Furthermore,
all points in a given generation lie in a shell. Shells are
number by n and n ∈ Z as shown in Figure 1. In a perfect
Cayley tree the number of points in the nth shell is Kn−1

if n ≥ 1 and K |n| if n ≤ 0. We further note that for a
perfect Cayley tree all points in a given shell have identical
neighborhood.

We consider now the motion of a particle on a Cayley
tree with connectivity, K. In the tight binding formalism
with nearest neighbor hopping only equations governing
the motion of the particle are

i
dC̃n

dt
= KC̃n+1 + C̃n−1 + ε̃nC̃n, n > 1

i
dC̃n

dt
= KC̃−|n|−1 + C̃−|n|+1 + ε̃nC̃n, n < 0

i
dC̃1

dt
= KC̃2 + C̃0 + ε̃1C̃1

i
dC̃0

dt
= KC̃−1 + C̃1 + ε̃0C̃0. (2)

Here C̃n denotes the probability amplitude at any point
in the nth shell and all points in the nth cell have the same
probability amplitude because of identical neighborhood.
The nearest neighbor hopping matrix, V has been taken to
be unity without any loss of generality. It is also assumed
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that all points in a given shell arising due to a specific or-
ganization have same site energy. We, however, note that
in our subsequent work with the DNLSE this assumption
will be automatically satisfied. The normalization condi-
tion for the site amplitudes gives

0∑
−∞

K |n||C̃n|
2 +

1

K

∞∑
n=1

Kn|C̃n|
2 = 1. (3)

We now make the following transformations. (i) τ =
√
Kt,

(ii) εn = ε̃n/
√
K, (iii) C̃n = K−(n−1)/2Cn, for n ≥ 1 and

(iv) C̃−|n| = K−|n|/2Cn for n ≤ 0. After substituting
these transformations in equation (2) we finally obtain

i
dCn

dτ
= Cn+1 + Cn−1 + εnCn, for n > 1 and n < 0.

i
dC1

dτ
= C2 +

1
√
K
C0 + ε1C1,

i
dC0

dτ
= C−1 +

1
√
K
C1 + ε0C0. (4)

Furthermore from equation (3) normalization condition
reduces to

∑∞
−∞ |Cn|

2 = 1. So, the motion of a particle
on a Cayley tree is mapped to that on a one dimensional
chain. However, in this chain the nearest neighbor hop-
ping matrix element between the zeroth and first site is
reduced from unity to 1/

√
K. In Appendix A we show

that the Green’s function G0,0(E) calculated from equa-

tion (4) will yield the G̃0,0(Ẽ = E
√
K) of a Cayley tree

with connectivity K.

Since we are interested in the DNLSE with gen-
eral power law nonlinear impurity, in our case εn =
ε̃n/
√
K = χ̃nK

−(n−1)σ/2K−1/2|Cn|σ for n ≥ 1 and

ε−|n| = ε̃−|n|/
√
K = χ̃−|n|K

−|n|σ/2K−1/2|C−|n||
σ for

n ≥ 0. Furthermore, χn = χ̃n/
√
K. We further note that

a model derivation of power law nonlinearity is given in
reference [34]. When all points have the same nonlinearity
strength, we have χn = χ, n ∈ Z. On the other hand for
a dimeric nonlinear impurity, χn = χ(δn,0 + δn,1), n ∈ Z.
Furthermore, the classical Hamiltonian which can gener-
ate equation (4) is

H =2
0∑

n=−∞

χn

σ + 2
V |n|σ|Cn|

σ+2

+ 2
∞∑
n=1

χn

σ + 2
V (n−1)σ|Cn|

σ+2

+
∞∑

n=−∞

(CnC
?
n+1 + C?nCn+1) + V0(C0C

?
1 + C1C

?
0 )

(5)

where V0 = ( 1√
K
− 1) and V = 1√

K
.

3 A dimeric nonlinear impurity in the Cayley
tree

Here we are interested in the possible solutions for SL
states due to a dimeric impurity. Hence, we assume that

Cm = φme
−iEt,

where

φm = (sgn(E)η)m−1
φ1 for m ≥ 1

and

φ−|m| = (sgn(E)η)
|m|

φ0 for m ≤ 0. (6)

Equation (6) is the exact form of φm in the presence of a
dimeric impurity and can be derived from Green’s function
analysis. η ∈ [0, 1] is given by η =

(
|E| −

√
E2 − 4

)
/2.

Sgn(E) denotes the signature of E. We further define
β = φ1/φ0 if |φ1| ≤ |φ0|. Otherwise we invert the defi-
nition of β. Because of the symmetry in the system we
will obtain the same result. So, apparently β ∈ [−1, 1].
However, we shall show later that for χ > 0, negative val-
ues of β except β = −1 are not permissible. The analyti-
cal argument showing the impossibility of such a situation
is presented in reference [34]. Of course, negative values
of β ≥ −1 will produce SL states in the antisymmetric
set if χ < 0. So, for χ > 0, β ∈ [0, 1] and for χ < 0,
β ∈ [−1, 0]. This assertion will also be substantiated here
in due course. Now, from the normalization condition we
get

|φ0|
2 =

1− η2

1 + β2
· (7)

Introducing equations (6) and (7), and the definition of β
in the Hamiltonian (Eq. (5)) we get an effective Hamilto-
nian, Heff where

Heff = 2sgn(E)η + 2
V β(1− η2)

1 + β2

+ 2
χ

σ + 2

(1− η2)σ/2+1(1 + |β|σ+2)

(1 + β2)σ/2+1
(8)

and V = 1√
K

for the Cayley tree otherwise it is a parame-

ter. The Hamiltonian consists of two variables, namely, β
and η and two constants, namely, χ and σ. The stationary
localized states correspond to fixed points of the reduced
dynamical system described by Heff .

3.1 |β| = 1

We here consider the case where |β| = 1. From ∂Heff/∂β
= 0, it is easy to see that |β| = 1 is always a solution to the
equation. This is due to the symmetry in the system. For
χ > 0, β = 1 yields the symmetric set, while for β = −1
we get the antisymmetric set. In this limit the relevant
equation governing the formation of SL states is obtained
by setting dHeff/dη = 0. This in turn yields

1

χ
= 2−σ/2

η(1− η2)σ/2

sgn(E)− sgn(β)V η
= F (σ, η). (9)
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Case 1: σ = 0

Here we have a linear dimeric impurity in a Cayley tree.
Since we are considering χ > 0, for the symmetric case we
must have sgn(E) = 1. On the other hand for antisym-
metric case sgn(E) can take both the signs. If V < 1, for
the symmetric case F (0, η) has a divergence at η = 1

V
> 1.

Since η ∈ [0, 1], this divergence occurs beyond the permis-
sible range of η. However, in the permissible range of η,
dF
dη

= (1 − V η)−2 > 0. So, F (0, η) is a monotonically in-

creasing function of η and it assumes the permissible max-
imum value at η = 1. This in turn then yields χcr = (1−V )
and a SL state will be obtained if χ ≥ χcr. For the dimer
in a Cayley tree we then need χ̃ ≥ χ̃cr =

√
K − 1. On

the other hand for V > 1, the divergence at η = 1
V

is in
the permissible range of η. So, even with an infinitesimally
small value of χ, we shall obtain a SL state. However, for
χ > 0, η ∈ [0, 1

V
].

We consider now the antisymmetric case with
sgn(E) = +1. It is easy to see that F (0, η) is a mono-
tonically increasing function of η. So, F (0, η) takes the
maximum possible value at η = 1. This in turn gives χcr =
1 +V . V is implicitly assumed to be positive. So, we shall
get a SL state for the Cayley tree if χ̃ ≥ χ̃cr =

√
K + 1.

For sgn(E) = −1, F (0, η) will diverge at η = 1
V

. So, if
V < 1, we shall not obtain any SL state below the band
of the host system. On the other hand if V > 1, F (0, η)
diverges in the permissible range of η. However, we also
have F (0, 1) = 1

V−1 . Thus, χcr = V − 1 and a SL state
below the band will be obtained if χ ≤ χcr = V − 1. We
now summarize our findings on the linear dimer.
(i) V < 1. No SL state will be obtained if χ < 1−V . There
is one SL state for (1−V ) < χ < (1+V ). But there are two
SL states if χ > (1+V ) [35]. (ii) V > 1. If 0 < χ ≤ (V −1),
there are two SL states. One appears above the band and
the other lies below the band. If (V − 1) < χ < (1 + V ),
we have one SL state above the band. For χ ≥ (V + 1),
we get two SL states and both appear above the band.

In passing we note the following. The Green’s function
for the Cayley tree can be obtained from equation (2).
This is shown in Appendix A. Furthermore, equation (2)
yields the known results for the stationary localized states
when a linear dimer is embedded in a Cayley tree. These
results confirm that equation (2) correctly describes the
dynamics of a particle on a Cayley tree with no disorder
either in the site energy or in the hopping.

Case II: σ 6= 0

Here we consider two cases, namely, V < 1 and V > 1
separately.

(A) V < 1. Since χ is taken to be positive, in equa-
tion (9) we need sgn(E) = sgn(β) = +1. Again the diver-
gence of F (σ, η) at η = 1

V
is of no consequence. Further-

more, F (σ, η) has at least one maximum at ηm ∈ [0, 1].
In fact, F (σ, η) has only one maximum. So, there will be
a χscr so that for χ > χscr we shall obtain two SL states
and for χ < χscr, there will be no SL state. On the other
hand in the antisymmetric case we have sgn(β) = −1

but sgn(E) can be either +1 or −1. In the first case
(sgn(E) = +1), F (σ, η) has no divergence but F (σ, 0)
= 0 = F (σ, 1). So, F (σ, η) has at least one (actually one)
maximum at η′m ∈ [0, 1]. Consequently, we shall get an-
other critical value of χ, say χacr so that if χ > χacr we
shall obtain two SL states. For χ < χacr there will be no
SL state. We further note that χacr > χscr. In the second
case (sgn(E) = −1), F (σ, η) diverges at η = 1

V
> 1. Fur-

thermore, F (σ, η) should be positive. Hence, η ≥ 1
V

. Since
allowed values of η ∈ [0, 1], no SL state will be obtained
below the host band. So, we shall get three regions having
no, two and four SL states. Furthermore, in half of the
states η → 1 as χ → ∞. So, these are unstable states.
Equations for critical lines in the (χ, σ) plane separating
three regions are given in Appendix B.

(B) V > 1. In the symmetric case F (σ, η) diverges
at η = 1

V ≤ 1 and F (σ, 0) = 0 = F (σ, 1). Furthermore,

F (σ, η) ≥ 0 for η < 1
V and F (σ, η) ≤ 0 for η > 1

V . Hence, a
SL state will always be obtained for χ > 0. The maximum
value of η the SL state can take is 1

V
and this will happen

if χ ∼ 0. In the antisymmetric case when sgn(E) = +1,
F (σ, η) has no divergence for η ∈ [0, 1]. Since, F (σ, 0) = 0

= F (σ, 1), F (σ, η) has a maximum at η
′′

m ∈ [0, 1]. So, there
will be a critical value of χ such that χ < χcr no SL state
will be obtained. On the other hand for χ > χcr, we shall
have two SL states and in one of these states η → 1 as χ→
∞. So, one of the states is an unstable SL state. Equation
for the critical line in (χ, σ) plane separating these two
regions is also given in Appendix B. For sgn(E) = −1,
F (σ, η) again diverges at η = 1

V
. However, for F (σ, η) to

be positive we need 1
V
≤ η ≤ 1. Since F (σ, 1) = 0, we

shall always get a SL state irrespective of the value of
χ. Furthermore, the SL state will appear below the host
band. The minimum value of η that a SL state in this case
can attain is 1

V
. This will happen if χ ∼ 0 and η → 1 as

χ → ∞. So, this is an unstable SL state. It is then seen
that for V > 1, we have two regions. The region below the
critical line has two SL states and that above the critical
line has four SL states. As usual, half of these states are
unstable.

3.2 |β| 6= 1

We consider here the scenario, |β| 6= 1. Heff (Eq. (8)) has
now two dynamical variables, η and β. So, the relevant
equation governing the formation of SL states is obtained
by setting ∂Heff/∂Xi = 0, where X1 = η and X2 = β.
From the first condition (∂Heff/∂η = 0) we obtain

sgn(E)η =
sgn(β)

V

|β|−σ/2 − |β|σ/2

|β|−(σ/2+1) − |β|σ/2+1
· (10)

So, η is a symmetric function of β and β−1 as enunciated
earlier. Furthermore, since η ≥ 0, if V > 0, sgn(E) =
sgn(β). In subsequent discussion we assume that
sgn(β) = +1. When |β| → 1, from equation (10) we
obtain,

ηu =
1

V

σ

σ + 2
· (11)
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The second condition (∂Heff/∂β = 0) yields

1

χ
=

sgn(β)|β| (1− |β|σ)

V (1 + β2)
σ/2

(1− β2)

(
1− η2

)σ/2
. (12)

Since (1−η2) for η ∈ [0, 1] is a positive semidefinite quan-
tity, for V > 0, χ and β will possess the same sign. In
other words, SL states with |β| 6= 1 in the antisymmet-
ric set are not possible. It is trivially seen that the right
hand side of equation (12) is also a symmetric function
of β and β−1. We further note that introduction of equa-
tion (10) in equation (12) makes the right hand side of
equation (12) an explicit function of σ and β. We call this
function F (σ, β).

Since σ = 2 is physically more relevant we consider
this case in detail. In this situation we have

1

χ
= η(1− η2) = F (2, η) = g(η). (13)

We note that g(η) has one and only one maximum at
η2
m = 1

3 for η ∈ [0, 1]. Furthermore, ηu = (2V )−1. So, if
V < 0.5 orK > 4, ηu > 1. Since g(η) in this case is defined
for η ∈ [0, 1], the maximum of g(η) lies in the permissible
range of η. On the other hand if V ≥ 0.5 (K ≤ 4), ηu ≤ 1.
So, η ∈ [0, ηu]. Then for ηm to stay in the allowed range
of η, we need η2

m ≤ η2
u. This in turn yields V ≤ 0.8660

or K ≥ 1.33. So, there will be a lower critical value of χ,
χcrl such that χ < χcrl there will be no SL state and for
χ > χcrl there can be two SL states. From equation (13)

we further obtain χcrl = χ̃crl/
√
K = 2.5980. Again for

V ≤ 0.5, since η ∈ [0, 1] and g(0) = 0 = g(1), we shall
obtain two SL states for V ≤ 0.5 and χ > 2.5980. In
one of the states η → 1 as χ → ∞. So, one state is an
unstable state. On the other hand, 0.5 ≤ V ≤ 0.8660,

we get χcru = 8V 3

4V 2−1 and χ > χcru, we get only one SL
state. Then, if V ≤ 0.8660 and χcrl < χ ≤ χcru we have
two SL states. In one state η → ηu as χ → ∞. So, one
state is unstable. Thirdly, for V > 0.8660, η ∈ [0, ηu] and
ηu < ηm. So, g(η) takes the maximum value at ηu and the
corresponding critical value of χ is χcru. We note that for
V = 1, χcru = 8/3 [34,29] and for V =

√
2, χcru = 3.232.

For χ > χcru we shall obtain one stable SL state.
We now consider the general σ. Substituting ηu = 1

in equation (11) we obtain σ′ = 2V/(1 − V ) if V < 1.

For the Cayley tree it translates to σ′ = 2/(
√
K − 1). For

simplicity we break the discussion in two cases.

Case I: σ ≥ σ′

Here ηu ≥ 1. So, η ∈ [0, 1] but β ∈ [0, βu] where βu ≤ 1.
Furthermore, F (βu, σ) = 0 = F (0, σ). So, for a given σ ≥
σ′, F (β, σ) has at least one maximum at βm ∈ [0, βu].
For K = 4 or V = 0.5, σ′ = 2. In Figure 2 we have
plotted F (β, σ) for σ = 2.5. We see that there is only one
maximum. Due to the maximum at βm, in the (χ, σ) plane
there will be a critical line separating the no state region
from the region containing two SL states. The equation

of the critical line is χ
(1)
cr = [F (βm, σ)]−1 where βm is the

Fig. 2. F (β, σ) as a function of β for β 6= 1 in case of a dimeric
nonlinear impurity in a Cayley tree. Here K=4. Solid, dotted
and dashes curves are for σ = 1.5, 2 and 2.5 respectively

solution of ∂F/∂β=0. Since in one of the states η → 1
as χ → ∞, the two states region has one unstable state.
Furthermore, as we go along the critical line β → 0, η → 0
and χ → ∞. This implies that in the stable state, the
amplitude gets preferentially localized in one of the dimer
sites as σ → ∞. χ → ∞ because in the limit a monomer
localized state is formed.

Case II: σ < σ′

Since ηu < 1, β ∈ [0, 1]. Consequently, there will be a

critical value of χ, χ
(2)
cr given by

χ(2)
cr =

2V

σ

(
1− η2

u

2

)−σ/2
. (14)

For χ > χ
(2)
cr , we shall obtain at least one SL state. Since

χ
(2)
cr → ∞ as σ → 0 and σ → σ′ (ηu → 1), χ

(2)
cr will as-

sume a minimum value at σmin. σmin is obtained from

dχ
(2)
cr /dσ =0. However, it gives a very complicated alge-

braic equation in σ. When σ → 0, η → 0. So, we obtain a
SL state localized mostly on the dimer. Precisely for this

χ
(2)
cr → ∞ as σ → 0. Again σ increases, η increases. This

will require lower values of χ. So, for 0 ≤ σ ≤ σmin and

χ ≥ χ(2)
cr , the system yields a SL state with β 6= 1. On the

other hand, for σmin ≤ σ ≤ σ′, albeit η increases towards

unity as σ → σ′, χ
(2)
cr increases towards infinity. So, the

SL state obtained for σ > σmin (in fact σcr defined later)

and χ ≥ χ(2)
cr is unstable.

F (β, σ) also develops a local maximum at βm < 1.
This is shown in Figure 2 for K = 4 (V=0.5) and
σ = 1.5. So, there will be a critical value of σ, σcr de-
fined as follows. If σ = σcr + δ and δ → 0, there exists an
ε → 0 depending on δ so that βm = 1 − ε. So, for

σ ≥ σcr there will be a lower critical value of χ, χ
(3)
cr

and χ < χ
(3)
cr no SL state will be obtained. It is trivially
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Fig. 3. Total phase diagram of SL states of a Cayley tree in
presence of a dimeric nonlinear impurity. Here K = 4(V =
0.5). χs and χa represents the critical lines for symmetric and
antisymmetric case respectively. χcru and χcrl represents the
upper and lower critical line respectively for β 6= 1 case. σmin,
σcr and σ′ are shown. Numbers indicate the number of possible
SL states in those regions in the (χ, σ) plane

seen that χ
(3)
cr = [F (βm, σ)]−1. For a given σ > σcr the

upper critical value is χ
(2)
cr (σ). Then in the (χ, σ) plane

we have a V-shaped region with boundaries σcr ≤ σ ≤ σ′

and χ > χ
(3)
cr (σcr) but χ

(2)
cr (σ) > χ > χ

(3)
cr (σ). This region

contains two SL states with β 6= 1. However, one of the
states is unstable because η → ηu as χ→ ∞. We further
note that the lower boundary of the V-shaped region joins
smoothly with the critical line for σ ≥ σ′.

Case III: V > 1

The scenario is very similar to the V = 1 case discussed
in reference [34]. However σcr moves to a higher value
depending on the magnitude of V .

The total phase diagram of SL states for V = 0.5
(K = 4) is shown in Figure 3. The number of possible
SL states in each region is indicated. We again note that
the maximum number of SL states is six. The total phase
diagram for V =

√
2 is shown in Figure 4. The maximum

number of SL states is found to be five. Furthermore, the
σ = 2 line has no special significance. The stability dia-
gram [36] of SL states for dimeric nonlinear impurity in a
Cayley tree is shown in the (η, σ) plane in Figure 5.

4 All sites nonlinear

4.1 Inter site peaked and dipped solutions

We consider here the formation of SL states in a Cayley
tree with each site having a power law nonlinearity and
the same coupling constant, χ. We note that the system
under consideration has the required translational invari-
ance. So, the proposed transformation (see Sect.2) will be
applicable here. The problem then reduces to the study of

Fig. 4. Total phase diagram for SL states of a one dimensional
chain with a dimeric nonlinear impurity and a bond defect in
between the impurity sites. Here V =

√
2. Numbers indicate

the number of SL states in those regions. The unnumbered
closed triangular small region contains four SL states.

Fig. 5. Stability diagram for SL states in a Cayley tree with
a dimeric nonlinear impurity. Here K = 4 (V = 0.5). Stability
of the states in various regions are marked in the figure.

formation of SL states in a one dimensional system with a
bond defect between the zeroth and the first site. The tun-
neling matrix between the sites, V is reduced by a factor
of 1/

√
K and site energies are

εn = V σ(n−1)χ|Cn|
σ if n ≥ 1

and

ε−|n| = V σ|n|χ|C−|n||
σ if n ≥ 0. (15)

Furthermore, the Hamiltonian is given by equation (5)
with χn = χ, n ∈ Z. We first note that for χ = 0 and
V ≤ 1, we have a band of states. For V > 1, we can have
localized states. Again it is well known that in one dimen-
sion or in pseudo one dimension, states appearing outside
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the band are exponentially localized [35]. If nonlinearity
can induce self-localization, states at the band edges of the
system will have the propensity to undergo localization.
Then low energy localized modes will have no node or all
nodes and one node or (N − 1) nodes, depending on the
sign of χ. N is the number of sites in the system. In case
of states having no node, states can peak either at lattice
site or at the middle of two lattice points. For the on-
site peaked localized states, the monomeric ansatz is then
suitable choice [27,28]. On the other hand, for the inter-
site peaked or dipped states dimeric ansatz is the rational
choice [20]. Since for V = 1 and V = 1/

√
K we have trans-

lationally invariant one dimensional system and a Cayley
tree with connectivity, K, the localized solutions will not
show any space dependence. For V > 1, we, however, do
not have the required translational invariance in the sys-
tem. Here localized states peaked in the vicinity of the
bond defect can show the space dependence. So, for this
case we restrict our study to the formation of self-localized
modes pinned at the bond defect.

We first consider inter-site peaked and dipped solu-
tions. It is clear from the previous discussion that the use
of dimeric ansatz is justified for this purpose. The corre-
sponding effective Hamiltonian with |β|=1 is given by,

Heff =
2χ

2σ/2(σ + 2)

(1− η2)σ/2+1

(1− V σησ+2)
+ 2sgn(E)η

+ sgn(β)(1− η2). (16)

By setting ∂Heff/∂η = 0, we obtain the equation govern-
ing the formation of SL states in this system. It is given
by

2σ/2

χ
=

η(1− η2)σ/2 (1− (V η)σ)

(sgn(E)− sgn(β)V η) (1− η2(V η)σ)
2 = G(η, σ).

(17)

From the asymptotic analysis of the equation of motion
for |n| → ∞, we obtain η = (|E|−

√
E2 − 4)/2 [27,28]. We

further note that the effective nonlinear coupling constant
in the equation of motion decreases exponentially with |n|
for K > 1 and σ > 0 (see Eq. (15)). We are also assuming
that χ > 0. Since [1 − (V η)σ] → −σ ln(V η) as σ → 0,
G(η, σ)→ 0 as σ → 0. Consequently χ→∞. This implies
that no SL state will be formed in this limit. We now
consider various cases.

Symmetric case

Here sgn(E) = sgn(β) = +1. We note that G(η, σ) have
a removable singularity and a divergence at η0 = 1/V and

η1 = 1/V
σ
σ+2 respectively. But for V < 1, η1 > 1. So, the

singularity of G(η, σ) at η1 will not play any role in the
formation of SL states. Again G(0, σ) = 0 = G(1, σ). So,
G(η, σ) will have at least one maximum at ηm ∈ [0, 1]. It
can be seen numerically that G(η, σ) has only one maxi-
mum for η ∈ [0, 1]. Consequently in the (χ, σ) plane there
will be a critical line separating two states region from

the no state region. Since one of the states in the two
states region η → 1 as χ → ∞, it is an unstable state.
On the other hand for V > 1, G(η, σ) has a divergence
at η1 < 1. So, in this case the system will always produce
a SL state even if χ is infinitesimally small. Furthermore,
limε→0G(η1 − ε, σ) → ∞ from the positive side only. So,
for χ > 0, ηmax = η1 and η → 0 as χ→∞. Hence this is
a stable SL state.

Antisymmetric case

In this limit sgn(β) = −1 but sgn(E) can be either +1
or −1. We note that for sgn(E) = +1, G(η0, σ) = 0 here.
But for V < 1 both η0 and η1 lie beyond unity. Since
G(η, σ) = 0 both at η = 0 and η = 1, it has a maximum
at ηm ∈ [0, 1]. This implies that in the (χ, σ) plane there
will be a critical line. This line again separates the no
state region and the two states region. Furthermore, in
the two state region one state will be unstable for the
same argument given earlier.

For V > 1, we note that G(η, σ) goes to zero and
infinity at η0 and η1 respectively. Furthermore, if σ is fi-
nite, η0 < η1. So, for η ∈ (η0, η1), G(η, σ) is negative.
This in turn implies that limε→0G(η1 − ε, σ) → −∞ and
limε→0G(η1 + ε, σ) → ∞. Consequently, limε→0G(1 −
ε, σ)→ 0 from the positive direction for η ∈ [η1, 1]. There-
fore, we shall always obtain a SL state even if χ is infinites-
imally small. In this SL state, however, ηmin = η1 and as
η → 1, χ → ∞. So, this is an unstable state. We further
note that G(0, σ) = 0 = G(η0, σ). Then there will be a
maximum of G(η, σ) at ηm ∈ [0, η0]. So, there will be a
critical line in the (χ, σ) plane also. This line will separate
one state region and three states region. It is further seen
that two of the states in the later region are unstable. We
can also have sgn(E) = −1. However, for V < 1 no SL
states will be obtained in this limit. On the other hand
for V > 1, limε→0G(η1∓ ε, σ)→ ∓∞. So, we shall always
get a SL state below the band even if χ is infinitesimally
small. However, this SL state is unstable.

We now combine our results to obtain the phase di-
agram. For V < 1, we have three regions, namely I, II
and III containing no SL state, two SL states and four SL
states respectively. This is shown in Figure 6 for K = 4
or V = 0.5. The stability diagram [36] of SL states for
this case is shown in Figure 7. However, for V > 1 we do
not have any no SL state region. Instead we have a three
state region separated from a five state region by a critical
line. One of these states appears below the band. In the
three state region we have two unstable states while in the
other region we have three unstable states. For V =

√
2,

the phase diagram is shown in Figure 8.

4.2 On site peaked soliton

We discuss here the formation of on-site soliton in the
transformed system described by the system given by
equation (2).
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Fig. 6. Phase diagram for SL states in a fully nonlinear Cayley
tree. The solid line is the critical line for the on site (zeroth site)
peaked solution. The lower dotted line is the critical line for the
inter site peaked (symmetric) solution and the uppermost line
defines the critical line for the inter site dipped (antisymmetric)
solution. Here K = 4 (V = 0.5). For inter site solutions region
I, II and III contains no, two and three SL states respectively.
For on site solutions there is no state below the solid curve and
two states above the solid curve.

For this purpose we first consider a power law non-
linear impurity with strength, χ embedded at the zeroth
site. After introducing the dimeric ansatz in the appropri-
ate form of the Hamiltonian we obtain

Heff =
2χ

(σ + 2)

(
1− η2

1 + β2

)σ/2+1

+ 2sgn(E) η + 2V β

(
1− η2

1 + β2

)
· (18)

Again relevant equations are obtained by ∂Heff/∂Xi=0
where X1 = β and X2 = η. After a trite algebra we then
obtain β = sgn(E)V η and

sgn(E)

χ
=

η(1− η2)σ/2

(1 + V 2η2)σ/2(1− V 2η2)
= f(η, σ). (19)

For V = 1/
√
K, equation (19) describes the formation of

SL states due to a nonlinear impurity in a Cayley tree.
This has been discussed in detail in reference [34]. So, we
see that the dimeric ansatz reduces to the appropriate
monomeric ansatz. When V > 1, f(η, σ) has a divergence
at ηu = 1/V . Furthermore we have, f(0, σ) = 0 = f(1, σ)
and limε→0 f(ηu − ε, σ) → ∞. So, we shall obtain two
SL states even if χ is infinitesimally small and σ > 0.
However, one state will appear below the band. In this
state ηmin = ηu and η → 1 as χ → ∞. So, this is an
unstable state. For, σ = 0, this state will appear if 0 <
χ < (V 2 − 1).

To study the formation of on-site peaked SL states
in the fully nonlinear chain we put the dimeric ansatz
with β = sgn(E)V η in the Hamiltonian, H given by equa-
tion (5). We then obtain the effective Hamiltonian, Heff ,

Fig. 7. Stability diagram for SL states in a fully nonlinear
Cayley tree. Here K = 4 (V = 0.5). Stability of the states in
various regions are marked in the figure.

Fig. 8. Total phase diagram for SL states of a fully nonlinear
one dimensional chain a dimeric nonlinear impurity and a bond
defect in between the impurity sites. Here V =

√
2. The region

I contains three SL states and the region II contains five SL
states.

given by

Heff =
2χ

(σ + 2)

(1− η2)σ/2+1(1 + V σ+2ησ+2)

(1 + V 2η2)σ/2+1(1− V σησ+2)

+ 2sgn(E)η + sgn(E)
2V 2η(1− η2)

1 + V 2η2
· (20)

We then set ∂Heff/∂η = 0. After a trite algebra we finally
obtain

sgn(E)

χ
=
η
(
1− η2

)σ/2 (
1 + V σ+2ησ+4

)
(1 + V 2η2)

σ/2
(1− V σησ+2)

2

(1− V σησ)

(1− V 2η2)

= f1(η, σ). (21)
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When V = 1, equation (21) reduces to the relevant equa-
tion in reference [28]. We note that f1(η, σ) has a remov-

able singularity at ηu and a divergence at η1 = V
−σ
σ+2 .

However, for V < 1 the divergence at η1 does not play
any role in the formation of SL states. Since f1(0, σ) =
0 = f1(1, σ) we expect at least one maximum of f1(η, σ)
at ηm ∈ [0, 1]. It is seen numerically that for η ∈ [0, 1]
f1(η, σ) has only one maximum. So in the (χ, σ) plane
there is a critical line separating the no state region from
the two states region. Of course, one of the states is un-
stable. In Figure 6 the critical line is shown by solid curve
for K = 4. On the other hand, for V > 1, f1(η, σ) diverges
at η1. Since, limε→0 f1(η1 ∓ ε, σ) → ∞ we have also two
states and these states are formed even if χ is infinitesi-
mally small. One of the states is unstable. However, nu-
merical calculation shows that there exists a critical value
of σ say σcr such that for σ > σcr there will be a four state
region bounded by two critical values of χ. For example,
for V =

√
2 σcr ∼ 3.85. But the four states region occurs

at larger value of χ. Two of the states are again unstable.
We now end this section with a brief discussion on the

exactness of the calculation. The method adopted here is
similar to the well known effective medium theory for the
linear system. This is quite clear from the form of Heff

given in equations (16, 20) In the first case we have an
effective nonlinear dimer in which χeff is a function of
η, χ and σ. In the second case we have a effective non-
linear monomer. But the use of the dimeric as well as
the monomeric ansatzs are quite justified for the study of
low energy self-localized modes. This has been discussed.
Therefore, basic features obtained here will also be repro-
duced by rigorous calculations. But quantitative agree-
ment may not be obtained. More work is therefore neces-
sary.

5 Summary

The DNLSE with general power law nonlinearity is used
to study the formation of stationary localized states in
the Cayley tree. Importance of this study is discussed in
the introduction. Two cases, namely, a dimeric nonlinear
impurity and the fully nonlinear system are considered.
To facilitate the study a transformation is devised to map
the system to an one dimensional system with a bond de-
fect. We also note in passing that the problem can also be
mapped to an half infinite chain with a bond defect be-
tween the zeroth site and the subsequent site. The Cayley
tree Green’s function for the problem can be obtained from
the transformed system. This is discussed in Appendix A.

The formation of SL states is studied by analyzing
the fixed point equations of the reduced dynamical sys-
tem. This is obtained by introducing the dimeric ansatz
in the appropriate Hamiltonian. For the linear dimer our
results agree with known results. In case of a nonlinear
dimer impurity, the system is found to sustain two types
of SL states and altogether a maximum of six types of
SL states can be obtained. In one case the absolute am-
plitude at two sites are equal. In the second category we

find states with unequal amplitudes. In this aspect our
results are very similar to what we obtain for a one di-
mensional chain. There are, however, some differences. In
the one dimensional chain the no state region is obtained
for σ ≥ 2. Furthermore, the V region extends to infinity
(σ′ → ∞). Here, no state region is obtained from σ = 0,
and σ′ = 2

(
√
K−1)

. So, the V region shrinks as K increases.

For σ = 2, we find that for K > 1.33 (V < 0.86), a third

critical value of χ, χcr = χ̃cr/
√
K = 2.5980. This is a

very interesting result. The corresponding χcr for K = 1
is 8/3. The stability and the phase diagram of SL states
are discussed in detail.

The formation of SL states in the fully nonlinear Cay-
ley tree is also considered. For the on site peaked solution,
the appropriate ansatz is derived. In the perfect nonlin-
ear chain, a three SL states region exists for the on site
peaked SL state. For the Cayley tree, this region is absent.
Instead for all cases, we find a two states region and a no
state region separated by respective critical lines. Along
with this the case where V (in relation to other hopping
element) > 1 is considered. For this case we show that un-
der certain conditions, states can appear both below and
above the band. Furthermore, we also find a four states
region.

The nonlinear dimer is considered here. But to obtain
a good understanding of SL states in fully nonlinear lat-
tices, a systematic study of SL states due to nonlinear
clusters of various sizes embedded in a perfect lattice is
necessary. So, the next thing to consider is cluster of three
and four nonlinear sites in a perfect system. This work is
in progress.

Appendix A

We show here that a subset of amplitude Green’s func-
tions of equation (4) with εn = 0, n ∈ Z yields the ampli-
tude Green’s functions of a particle moving on a Cayley

tree with connectivity, K. We first note that Gn,m(Ẽ =

E
√
K) = 1√

K
C̃m(0)Gn,m(E). Furthermore, from the

transformations, we have C̃m(0) = Cm(0)/K(m−1)/2 if

m ≥ 1 and C̃m(0) = Cm(0)/K |m|/2 if m ≤ 0. The Hamil-
tonian (H) that yields equation (4) is H = H0+H1 where,

H0 =
∑
n

(
a†nan+1 + a†n+1an

)
and

H1 =

(
1
√
K
− 1)

)(
a†0a1 + a†1a0

)
(22)

an(a†n) destroys (creates) a particle at the n-th site. We de-

fine V0 = (1/
√
K−1). We further have G(E) = (E−H)−1

and G0(E) = (E−H0)−1. These two operators are related
by (I − G0H1)G = G0 where I is the identity operator.
By defining < n|G(E)|m >= Gn,m(E) and with simi-
lar definition for G0(n,m)(E) we obtain from the relation



32 The European Physical Journal B

between G and G0

Gn,m(E)+V0

(
G0(n,1)(E)G0,m(E)+G0(n,0)(E)G1,m(E)

)
= G0(n,m)(E). (23)

We have then two unknowns, namely, G0,m(E) and
G1,m(E). After some algebra we obtain(
G0,m(E)
G1,m(E)

)
=

1

D

(
1− V0G0(1,0)(E) V0G0(0,0)(E)
V0G0(0,0)(E) 1− V0G0(0,1)(E)

)
×

(
G0(0,m)(E)
G0(1,m)(E)

)
(24)

and

D=
(
1−V0G0(0,1)(E)

) (
1−V0G0(1,0)(E)

)
−V 2

0 G
2
0(1,0)(E).

(25)

We again note that G0(m,n)(E) = [sgn(E)]n−m+1

×G0(0,0)(|E|)η
|n−m| and G0(0,0)(|E|) = 1/

√
E2 − 4 for

|E| > 2. Hence, G0(0,0)(|E|) = (1−η2)/η. After some sim-
ple algebra we obtain D = [(K − 1)ηG0(0,0)(|E|) +K]/K.
Furthermore, from equation (24) and relevant transforma-
tions we obtain

G̃0,0(Ẽ) =
1
√
K
G0,0(E)

= sgn(Ẽ)
2K

(K − 1)|Ẽ|+ (K + 1)
√
Ẽ2 − 4K

· (26)

Again from equation (24) we can easily show that for
m > 0

G̃o,m(Ẽ) =
1
√
K

1

K(m−1)/2
G0,m(E)

= [sgn(Ẽ)]m+1G̃0,0(|Ẽ|)

(
2

|Ẽ|+
√
Ẽ2 − 4K

)|m|
(27)

when G̃0,0(|Ẽ|) is given by equation (26). On the other
hand for m < 0, we have

G̃0,−|m|(Ẽ) =
1
√
K

1

K |m|/2
G0,−|m|(E) = G̃0,m(Ẽ). (28)

From equation (24) we further obtain, for m ≥ 1

G̃1,m(Ẽ) =
1
√
K

1

K(m−1)/2
G1,m(E)

= [sgn(Ẽ)]mG̃0,0(Ẽ)

(
2

|Ẽ|+
√
Ẽ2 − 4K

)m−1

= G̃0,m−1(Ẽ). (29)

On the other hand for m ≤ 0 we obtain

G̃1,−|m|(Ẽ) =
1
√
K

1

K |m|/2
G1,−|m|(E) = G̃0,|m|+1(Ẽ).

(30)

Since in relation to the Cayley tree we are dealing with
a translationally invariant problem, the choice of origin
is arbitrary. So, (0,1) bond can be rechristened (n, n+ 1)
without any loss of generality. If the shift in the origin is in-
corporated in the transformation, G0,m(E) and G1,m(E)

will be transformed to G̃n,m(Ẽ) and G̃n+1,m(Ẽ) respec-
tively. Consequently our result will agree in full with the
calculation in reference [35].

Appendix B

We derive here the equation of the critical line for the sym-
metric state with β=1 and for the antisymmetric state.
Note that χ > 0 and V > 0. The equation to be consid-
ered for the purpose is

2σ/2

χ
=

η(1− η2)σ/2

sgn(E)− sgn(β)V η
= F (η, σ). (31)

Then the equation of the critical line in (χ, σ) plane is

χ±cr =
2σ/2

F (η±cr, σ)
· (32)

In equation (32) ± refers to the symmetric and the anti-
symmetric cases respectively. To find η±cr we set ∂F/∂η =
0. This in turn yields

σV η3 ∓ (σ + 1)η2 ± 1 = 0. (33)

In equation (33) the upper sign refers to the symmetric
case and the lower sign to the antisymmetric case. For
V = 1, we find that

ση2 ∓ η − 1 = 0. (34)

Equation (34) has been derived in reference [34]. ηcr is a
real positive root of equation (33) and it must be less than
unity. The expression for the ηcr is found to be

η±cr =
σ + 1

3σV
± Im

( √
3

6σV

(
Q
3
√

2
−

3
√

2 (σ + 1)
2

Q

))

∓
1

6σV

(
3
√

2 (σ + 1)2

Q
+

Q
3
√

2

)
(35)

where, Q = 3

√
(A+ 3σV

√
3B), A = 2 + 6σ + 6σ2 + 2σ3 −

27σ2V 2 and B = −4 − 12σ − 12σ2 − 4σ3 + 27σ2V 2. In
equation (35) Im refers to the imaginary part. While the
upper sign refers to the symmetric case, lower sign is for
the antisymmetric case.
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